
Turbulence, Turbulent Mixing and
GPU-Accelerated Computing on TITAN

M. P. Clay1, D. Buaria2, P. K. Yeung1

E-mail: mclay6@gatech.edu

1Georgia Institute of Technology
2Max Planck Institute for Dynamics and Self-Organization

OLCF User Meeting, Oak Ridge, May 15, 2018

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 1/23

Outline

1 Computational Algorithm for Mixing at High Schmidt Number

2 Brief Review of OpenMP 4.X Target Offloading

3 OpenMP 4.5 GPU Algorithm on Titan

4 Conclusions and References

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 2/23

Outline

1 Computational Algorithm for Mixing at High Schmidt Number

2 Brief Review of OpenMP 4.X Target Offloading

3 OpenMP 4.5 GPU Algorithm on Titan

4 Conclusions and References

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 3/23

Challenges Facing Simulations of Turbulent Mixing

When the scalar is weakly-diffusive (e.g., salinity in the ocean),
resolution requirements for scalar are stricter than the velocity field.

Figure: Scalar fluctuations for (left) a low-diffusivity scalar and (right) a scalar
with even lower diffusivity in same (statistically) turbulence.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 4/23

A Dual-Grid Dual-Scheme Approach

Velocity field: coarse grid, N-S equations, Fourier pseudo-spectral scheme.
Scalar fluctuations (main interest) on finer grid (Gotoh et al. 2012)

∂θ/∂t + u · ∇θ = D∇2θ − u · ∇〈Θ〉
I Derivatives via eighth-order combined compact finite differences (CCD).
I Interpolate velocity field from coarse grid to fine grid for advection terms.

Velocity Field Scalar Field

Interpolation

For our simulations, scalar grid is finer than the velocity grid by a factor
of 8 in each direction =⇒ computational cost dominated by scalar.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 5/23

Parallel Implementation for Weakly-Diffusive Scalars

Disjoint groups of processors for the two fields (Clay et al. 2017)
To form advective terms, send well-resolved velocity field to scalar
communicator, and perform tricubic interpolation.
Overlap inter-communicator transfer with computations for scalar.

x1

x2x3 SEND

SEND

Velocity Field
Computation

SCATTER

SCATTER

Scalar Field
Computation

Our focus here is on how OpenMP is used for the scalar field
computations appearing on the right (the larger computation).

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 6/23

CCD Scheme and Opportunities to Improve Scalability

Application of the CCD scheme is the most expensive part of the
code. Scheme is implicit: all points along a grid line are coupled.

Parallel algorithm (Nihei et al. 2003) to solve system w/o transposes.
Basic steps required for distributed memory CPU implementation:

Op. Operation Summary
A Fill ghost layers for scalar field with SEND and RECV operations
B Form right-hand-side of linear system and obtain solution
C Pack and distribute data for reduced system with MPI_ALLTOALL
D Unpack data and solve reduced linear system
E Pack and distribute data for final solution with MPI_ALLTOALL
F Unpack data and finalize solution of CCD linear system

Operations for three coordinate directions are independent.
I Try to overlap communication with computation.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 7/23

Outline

1 Computational Algorithm for Mixing at High Schmidt Number

2 Brief Review of OpenMP 4.X Target Offloading

3 OpenMP 4.5 GPU Algorithm on Titan

4 Conclusions and References

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 8/23

Basics of GPU Acceleration with OpenMP 4.X

Like with OpenACC, when using OpenMP for GPU acceleration users
rely on the compiler to do most of the “heavy lifting”. Users will need:

1 Constructs to control data movement between the CPU and GPU(s).
2 Constructs to execute (hopefully accelerate) kernels on the GPU(s).

To interface with the GPU (device), use TARGET constructs:
TARGET DATA MAP(...): map data to the device data environment.
TARGET UPDATE TO/FROM(...): push/pull data to/from the device.
TARGET TEAMS, DISTRIBUTE, and PARALLEL DO: split up work over
GPU threads, with a team corresponding to a CUDA thread block.

Will see some examples in the coming slides. Also see “OpenMP
Application Programming Interface Examples” for many examples.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 9/23

Asynchronous Execution with OpenMP 4.5

Can often improve performance if host/device operate asynchronously.
For example, both the host and device can perform computations, or
the host can perform communication while the device computes.
Try to keep all resources active as much as possible!

OpenMP has supported async. target execution since version 4.5.
Cray supports the necessary clauses, beginning with CCE/8.5.

To use this capability, code must indicate which kernels can run
asynchronously, and must express necessary synchronization explicitly.
Relevant OpenMP clauses to append to TARGET constructs include:

NOWAIT: a kernel may be run asynchronously.
DEPEND: used to enforce an ordering of operations involving the device.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 10/23

Outline

1 Computational Algorithm for Mixing at High Schmidt Number

2 Brief Review of OpenMP 4.X Target Offloading

3 OpenMP 4.5 GPU Algorithm on Titan

4 Conclusions and References

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 11/23

Accelerating a Production DNS Code

At the right place at the right time:
Started porting code to run on GPUs with OpenACC in summer 2016
to apply for 2017 INCITE allocation.
Transitioned to Cray’s OpenMP 4.X implementation (Clay et al. 2018)
in early 2017, which was mature enough for production-level work.

Original plans for the acceleration effort:
Overall cost dominated by scalar field computation: accelerate this
portion, leave small velocity computation untouched.
Minimize data movement: put entire scalar computation on the GPU.
I Challenge: on XK7 nodes, 32 GB on the host, 6 GB on the device.

Can scalability be improved by overlapping communication and
computation as much as possible?

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 12/23

Summary of Acceleration of DNS Code Using CCE/8.6

Algorithmic changes required to run on Titan:
Drastic reduction in memory to reduce minimum required node count.
I Now require 8192 nodes instead of 16834 nodes for 81923 problem.
CCD linear system in x1 requires different use of available memory.
I Perhaps the most performance-sensitive GPU kernel in the code.
For accelerated code, cannot calculate all derivatives simultaneously.
I Memory restrictions: calculate x2 and x3 together, calculate x1 separately.

Manually packing/unpacking buffers for host/device data transfers.

Challenges to achieve good scalability with the new algorithm:
Computations accelerated, but communication remains the same.
Use OpenMP 4.5’s NOWAIT and DEPEND to overlap communication and
computation, wherever possible.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 13/23

Time Stepping Algorithm on Titan

Algorithmic changes to RK4 required to run on Titan.
For best performance, do not calc. all derivatives together (memory).

Step Device Operation Summary
1 CPU Receive velocity field and fill ghost layers
2 PCI Transfer u1 velocity to GPU
3 ALL Calculate scalar derivatives in x1; interpolate u1
4 PCI Begin transfer of u3 velocity to GPU
5 GPU Increment RK4 with x1 diffusion and partial advection
6 ALL Calculate advection derivative in x1
7 GPU Increment RK4 with x1 advection term
8 ALL Calculate scalar derivatives in x2 and x3; interpolate u3
9 PCI Begin transfer of u2 velocity to GPU
10 GPU Increment RK4 with x2 and x3 diffusion and x3 advection
11 ALL Begin calculation of x3 advection derivative; interpolate u2
12 GPU Increment RK4 with x2 partial advection
13 ALL Finalize advection derivatives in x2 and x3

14 GPU Perform RK4 sub-stage update

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 14/23

A Conflict: Memory Layout vs Computational Performance

Code uses 3D arrays which are all allocated in the same way.
For example: ALLOCATE(df1(nc1,nc2,nc3)).
For most loops, we get great (coalesced) access along the inner index.

A problematic kernel: solving a linear system in the x1 direction.
DO k=1,nc3; DO j=1,nc2; DO i=2,nc1
df1(i,j,k)=F[df1(i,j,k),df1(i-1,j,k)]
END DO; END DO; END DO

Cannot vectorize i loop, but need memory access along inner index.

Swap memory layout to improve this kernel:
Make j loop the inner index: ALLOCATE(buf(nc2,nc1,nc3))

DO k=1,nc3; DO i=2,nc1; DO j=1,nc2
buf(j,i,k)=F[buf(j,i,k),buf(j,i-1,k)]
END DO; END DO; END DO

Not free: loops elsewhere in code need original memory layout.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 15/23

Performance of Routine Applying CCD in the x1 Direction

Use kernel to measure performance for CPU and GPU execution.
Focusing on computations in the x1 direction.
GPU performance metrics with nvprof: dram_util., alu_fu_util.
Test problem: 5123 with 2x2x2 process layout and 4 OpenMP threads.

Computations with original memory layout
Loop CPU (s) GPU (s) Speedup dram alu
RHS 0.0895 0.0125 7.13 7 9

Lin. Sys. 0.5576 0.2161 2.58 2 1
Final Sol. 0.2354 0.0211 11.2 7 8
Total 0.8824 0.2497 3.53 — —

Computations with swapped memory layout and loop blocking
Loop CPU (s) GPU (s) Speedup dram alu
RHS 0.1265 0.0185 6.84 5 9

Lin. Sys. 0.1407 0.0336 4.19 7 2
Final Sol. 0.1515 0.0153 9.88 8 9
Total 0.4187 0.0674 6.21 — —

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 16/23

OpenMP 4.5 Usage with CCE/8.6 in DNS Code

Use tasking clauses on TARGET constructs to overlap comm./comput.
Ensure correct ordering of kernels with DEPEND and a directionally-
dependent dummy variable, e.g., SYNCX3 for the x3 direction.
Before performing communication in, say, x3, launch all available x2
kernels asynchronously with NOWAIT.

! From previous data movement , make sure data is on host.
!$OMP TARGET DEPEND(IN:SYNCX3)
!$OMP END TARGET
!
! Launch all kernels in the X2 direction (showing just one).
!$OMP TARGET TEAMS DISTRIBUTE DEPEND(INOUT:SYNCX2) NOWAIT
<Computational task on the GPU for the X2 direction >
!$OMP END TARGET TEAMS DISTRIBUTE
!
! Proceed with communication call in the X3 direction.
CALL MPI_ALLTOALL (...)

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 17/23

Timelines with and without NOWAIT

Examine how node utilization changes with asynchronous execution
40963 grid using 1024 nodes with 2 MPI processes per node

t/τ

(d)

(c)

(b)

(a)

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3 3 3 3 3 3

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325

P0

P1

MPI

CPU

GPU

GPU

CPU

MPI

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325

P0

P1

MPI

CPU

GPU

GPU

CPU

MPI

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325

P0

P1

MPI

CPU

GPU

GPU

CPU

MPI

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325

P0

P1

MPI

CPU

GPU

GPU

CPU

MPI

MPI Velocity

MPI SENDRECV x1

MPI ALLTOALL x1

MPI SENDRECV x2

MPI ALLTOALL x2

MPI SENDRECV x3

MPI ALLTOALL x3

CPU x1 r.l.s.

CPU x2 r.l.s.

CPU x3 r.l.s.

CPU Other

GPU Interp.

GPU Other

GPU RK4

GPU x1 r.h.s.

GPU x1 l.s.

GPU x1 f.s.

GPU x2 r.h.s.

GPU x2 l.s.

GPU x2 f.s.

GPU x3 r.h.s.

GPU x3 l.s.

GPU x3 f.s.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 18/23

Performance and Scalability of Accelerated DNS Code

Appx. 5X speedup, with improvement from 80% (non-async.) to 90%
(async. with NOWAIT) weak-scaling for 81923 on 8192 nodes.

CPU-only: 14.8 for 5123 and 16.13 for 81923

OpenMP 4.5 GPU: 2.93 for 5123 and 3.26 for 81923

100

101 102 103 104 105 106

512 3

1024 3

2048 3

4096 3

8192 3

W
al
lT

im
e
(s
ec
)

Processing Elements
Figure: GPU code timings for non-async. (+) and async. using NOWAIT (X).

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 19/23

Impact of Host Configuration on Overall Performance

Question: what host (CPU) MPI/OpenMP configuration to use?

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 2 4 8 16 1 2 4 8 16
Figure: Normalized time per step for (left) 10243 and (right) 40963 varying num.
of OpenMP threads on CPU (1 to 16). Normalized by 8-thread 10243 timing.

Neither extreme (pure MPI or OpenMP), but larger sub-domains give
better kernel performance, and two MPI processes keep GPU busy.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 20/23

Outline

1 Computational Algorithm for Mixing at High Schmidt Number

2 Brief Review of OpenMP 4.X Target Offloading

3 OpenMP 4.5 GPU Algorithm on Titan

4 Conclusions and References

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 21/23

Conclusions and Outlook

Using OpenMP 4.5 (via CCE/8.6) to accelerate a turbulence code:
Strategy was to place entire scalar field computation on the GPUs.
Following algorithmic changes for a key kernel (i.e., swapping memory
layout for x1 derivatives) we achieve 5X speedup.
Use of OpenMP 4.5 tasking clauses on TARGET constructs (i.e., DEPEND
and NOWAIT) to make code asynchronous improves scalability.

Future work and extensions
For Summit, kernels modified for IBM XLF (2017 OLCF hackathon).
Velocity field must be accelerated (see poster by K. Ravikumar).
For differential diffusion of two scalars, include a moderate Schmidt
number scalar in the pseudo-spectral computation.
For active scalars, communicators become strongly coupled. Must
assess performance to determine final INCITE 2018 configurations.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 22/23

References

1 T. Nihei & K. Ishii (2003) Parallelization of a highly accurate finite
difference scheme for fluid flow calculations, Theor. Appl. Mech.
Japan, 52, 71–81.

2 T. Gotoh, S. Hatanaka & H. Miura (2012) Spectral compact difference
hybrid computation of passive scalar in isotropic turbulence, J.
Comput. Phys., 231, 7298–7414.

3 OpenMP Architecture Review Board (2015) OpenMP Application
Programming Interface Examples, www.openmp.org.

4 M. P. Clay, D. Buaria, T. Gotoh & P. K. Yeung (2017) A dual
communicator and dual grid-resolution algorithm for petascale
simulations of turbulent mixing at high Schmidt number, Comput.
Phys. Commun., 219, 313–328.

5 M. P. Clay, D. Buaria, P. K. Yeung & T. Gotoh, GPU acceleration of a
petascale application for turbulent mixing at high Schmidt number
using OpenMP 4.5, Comput. Phys. Commun., 228, 100–114.

Yeung & Clay, Part 2 OLCF User Meeting 2018 Aug 2017 23/23

www.openmp.org

	Computational Algorithm for Mixing at High Schmidt Number
	Brief Review of OpenMP 4.X Target Offloading
	OpenMP 4.5 GPU Algorithm on Titan
	Conclusions and References

